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1 Computing Power Demand - 1

With the explosive growth of artificial intelligence (Al) applications such as intelligent
transportation, industrial brain, autonomous driving, and the internet of things (loT),
human society generates massive amounts of data every day. To analyze and extract
valuable information from this data, powerful data storage, transmission and processing
capabilities are required, posing unprecedented challenges to the computing
capabilities of existing data centers and edge devices. Meanwhile, Al models are rapidly
evolving and expanding in attempts to leverage this data. Further, the explosive growth
of model parameters means greater computing power demand for each unit of input
data to the model. According to the data published by OpenAl, as shown in Figure 1, in
recent years, the average size of Al models increases tenfold every year. The demand for

Al training follows a similar trend!.
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However, performance growth of traditional computing chips has encountered
bottlenecks. Since the start of the semiconductor industry 60 years ago, computing
power improvement can be described by Moore's Law and Dennard Scaling. Moore's
Law predicts that transistor density doubles every 18 months, while Dennard Scaling®?
states that power density remains unchanged as transistor density improves. The
combination of Moore's Law and Dennard Scaling allows CMOS chips to continuously
improve computing power while maintaining constant energy and area consumption.
However, as the chip manufacturing process moves to 5nm and 3nm, transistor density
is close to its physical limit. Moore's Law is slowing down and is expected to end in the
2020s". Dennard Scaling ended as early as 2004", resulting in power supply and heat
dissipation challenges as transistor density improves. This is also known as the "Power
Wall". In addition, the tape-out and design costs of advanced processes are getting
higher and higher, which creates a "Cost Wall". The traditional single-chip computing

power improvement path is now unsustainable.

Even if Moore’s Law and Dennard Scaling continue, the exponentially growing demand
for computing power cannot be met by discrete computing systems. The consumption
of resources to meet computing demand is increasing every day. It is necessary to deploy

large-scale distributed computing systems in data centers.

This whitepaper will first introduce the semiconductor industry's existing efforts to
increase and better utilize computing power, as well as the challenges encountered to
do so. Afterwards, a new data center paradigm based on large-scale optoelectronic
integration technology will be proposed. This new paradigm aims to provide a new idea

for the evolution of next-generation data centers.
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4

< Development of Computing Pc

Hyperscalers and data centers have made substantial efforts to improve computing
power and efficiency. Among them, the Computing Power Network (CPN) has become
one of the most widely recognized concepts in the global community®. CPN is a new
type of information infrastructure that flexibly allocates and schedules computing,
storage, and network resources on demand according to business needs. Its ultimate
goal is to abstract hardware resources into computing power so that users can purchase
computing power from data centers according to actual computing needs without
buying or leasing hardware equipment. Thus, using computing power is equally

convenient as using other utility services (such as water, electricity, and gas).

To realize this vision, CPN may be composed of massive high-performance computing
nodes with efficient data interconnection between nodes. While each computing node
is scaled up to construct a solid computation foundation of CPN, the computing power
can also be scaled out through efficient data interconnection to form a huge computing
capacity. CPN is expected not only to solve the problems of low computing power
utilization and scalability, but also address the difficulties of computing power migration
and usability. Through the flexible scheduling of hardware resources, CPN can realize
more fine-grained sharing within the network. This chapter will briefly introduce the
current challenges faced by the industry in terms of scaling-up and scaling-out of

computing power.
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2.1 Scale-up in a single computing node

In data centers, a computing node usually refers to a single server with one or two CPU
sockets that may contain many CPU cores. As the increase of transistor density slows
down, the performance improvement associated with semiconductor process advances
is becoming more and more limited. Thus, various ideas have been proposed to improve
computing power in a single node. The first is to prioritize higher computing efficiency
over the versatility of computation found in CPUs through chip-level architecture
innovations. Based upon these innovations, some researchers even seek to go beyond
traditional von Neumann architecture and CMOS technology, and search for disruptive
new computing paradigms to boost computing power far beyond Moore's Law. Another
strategy is to leverage advanced packaging technology and put multiple chiplets into a
single package which breaks the performance barrier imposed by the reticle size and

achieves higher computing power.

2.1.1 Heterogeneous computing architecture innovations

Early architectural innovations were mainly driven by increasing the instruction-level
parallelism (ILP) in general-purpose computing architectures to take advantage of on-
chip transistor resources brought about by Moore's Law. For example, with abundant
transistor resources, the superscalar CPU architecture can enable multiple-instruction
issuing and out-of-order execution. Long and deep pipelining allows more computing
operations on a single unit input of data. At the same time, deepening of the pipeline
reduces compute operations in each pipeline stage, thereby achieving a substantial

increase of CPU frequency.
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As semiconductor technology evolves, the increase of chip area also enables more logic
functions to be integrated on the chip. These logic functions, including more hierarchical
data caches, larger data buffering, and data prefetching blocks, improve performance
which has been long troubled by the “Memory Wall” problem due to the unbalanced
development of computing and memory speeds. Recently, large-scale efficient data
transfer technology has become a new driving force for performance advancements.
Innovative technologies, such as High Bandwidth Memory (HBM), have brought a new
wave of performance improvements to computing architectures. This trend is well
reflected in Google's paper®® which summarizes the evolution of several generations of

Tensor Processing Unit (TPU) architectures.

Finally, the transistor boom also makes it possible to enable multi-threading, multi-core,
and context-based kilo-threading architectures. In combination with single instruction
multiple data (SIMD) and other vectorization technologies, thread-level parallelism (TLP)
has resulted in a multiple magnitude performance leap in modern computing

architectures.

Built on top of these general-purpose architecture improvements, domain specific
architecture (DSA) has also achieved an accelerated pace of development. As
technological innovations such as artificial intelligence, 5G, autonomous driving, and
VR/AR continue to advance, the requirements for chip computing power, functions,
power consumption, cost, and security in different applications are increasingly
diversified. Under the trend of wide-ranging computing power requirements, DSA
emerges timely as the customized architecture targeted for certain specific application
domains. It can include special computing units with unique parallel mechanisms, data

types, and domain-specific languages, etc. The DSA architecture achieves performance



Large-scale optoelectronic integrated enabling intelligent computing power networks

speed-ups by sacrificing versatility of the architecture to effectively utilize native
computing capabilities of the hardware, thus gaining better energy efficiency than

general-purpose computing architectures.

For example, Nvidia's latest Hopper graphics processing unit (GPU)", based on a typical
TLP architecture, uses more powerful Tensor Cores to conduct matrix multiplications.
Moreover, Tensor Core has added more domain-specific technologies to scale up
computing power, including fine-grained sparse computing and dynamic programming
algorithm optimization. Compared with its previous generation A100 GPU, the Hopper
H100 GPU has a performance improvement of 2 to 4 times on a set of Al training tasks.
Another DSA example is Google's TPU, in which the systolic array is designed to optimize
matrix multiplication. Systolic array significantly improves the compute density by
increasing multiple operations on a unit input of data while alleviating the Memory Wall

effect.

However, due to the nature of customization, domain-specific architecture usually lacks
computational completeness. Therefore, the heterogeneous computing architecture is
used to combine CPUs and multiple types of DSAs. By allowing each DSA to maximize
performance in its own domain, heterogeneous computing achieves the highest

performance and best energy-efficient computing.

While domain-specific architecture has achieved a substantial increase in computing
power, it is still limited by the underlying computing components and von Neumann
architecture. The underlying components in traditional computer chips are based on
CMOS transistors. The core working mechanism of CMOS is to control the current in

transistors by voltage signals.
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However, with improvement of the CMOS manufacturing process, transistor size is
shrinking and the quantum tunneling effect reduces the efficiency of controlling current.
Thus, new underlying computing mechanisms are required to break through this

bottleneck.

At the same time, traditional computer design is typically based on von Neumann
architecture, where computing and data are separated into different functional blocks.
After data is moved to the computing unit through sequential control logic, calculations
are performed. The main issue of this architecture is that the calculation is delayed due
to data fetch and data movement, which also increases power consumption. These
effects gradually reveal the Memory Wall problem. Even though modern architecture
innovations continue to advance through vectorization, hyper-threading, pipelined
parallelism, and multi-core architectures, the performance potential in von Neumann

architecture is getting smaller and smaller.

Along with general architecture innovations, non-von Neumann architecture has begun
to flourish. Given that non-von Neumann architectures are no longer based on any
sequential control flow execution (e.g., biological computing and quantum computing),
or often are derived to overcome the core bottleneck of von Neumann architectures (e.g.,
memristor-based in-memory computing), these novel architectures prove disruptive and
create a huge space for performance and energy efficiency improvement due to their
new underlying computing mechanisms. For example, the near-memory computing
enginel®, based on 3D hybrid packaging, can dramatically improve the performance of
Al accelerators on recommendation models by directly connecting multi-storage

memory to computing logic units.
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2.1.2 Chiplet architecture

Because the increase of transistor density is gradually slowing, boosting computing
power within a single package can only be achieved by expanding the total chip area
once architecture improvements are exhausted. However, due to limitations of the
CMOS process, maximum area of a single chip is capped by the size of the reticle, which
is generally around 800mm?. To further expand the total area of the chip, it is necessary
to find new ways to break through the upper limit of the area of a single chip, thus

emerges the new idea of chiplet systems.

Thanks to the progress of advanced packaging technologies, it is possible to package
multiple chiplets with domain-specific functions on the same substrate. In the past three
years, the world's leading chip companies have increasingly been deploying chiplet
architectures to high-end computing systems. For instance, Intel's Ponte Vecchio GPUY!
consists of more than 40 dies with a total area of over 3,000 mm?. Similarly, Cerebras'
Wafer Scale Engine (WSE)!"” has an area of over 40,000 mm?, which is 50 times larger

than the area of the current reticle size.

In addition to increasing the total chip area, modularity of chiplets also allow computing
nodes of different processes or different fabs to be contained within a single package.
This not only enables flexibility of disaggregated architecture design, but also greatly
improves yield and reduces manufacturing costs. Furthermore, chiplet architecture helps
realize domain-specific heterogeneous computing at the chip level, which is more

accommodating to various computing tasks, as opposed to the card level.

The current chiplet products are primarily based on proprietary architectures. However,

there are many industrial organizations (such as UCle and BOW) actively promoting
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chiplet interconnection standards for on-chip heterogeneous computing. For example,
in 2021, Google released the specification of Open Chiplet architecture!", to further

promote development of the chiplet ecosystem.

As total area of the chip becomes larger, the distance of data transmission by electricity
also increases, as does latency and energy consumption of data transfer. In pure digital
circuits, to reduce the cost of data transfer, each computing unit generally only transmits
data to its nearest neighboring computing units. Therefore, data transfer across multiple
computing units often requires a few hops. Since a large computing task usually needs
to be mapped to multiple computing units, the process requires very complex algorithms

that optimize mapping to avoid long-distance data transportation.

2.2 Scale-out with massive computing nodes

2.2.1 Challenges of current large-scale distributed computing

Architectural innovation and computing power improvement within a single computing
node alone are insufficient to meet the growing demand for large-scale compute,
therefore, tens of thousands of computing devices are often deployed in data centers.
However, simply stacking up of many computing nodes doesn’t necessarily lead to
efficient use of computing resources due to network congestion. Especially with data-
intensive applications, multiple parallel tasks conflict with each other in the
communication network, which causes additional delay and performance loss, resulting
in low resource utilization of the overall system. Moreover, data centers often plan the
hardware architecture for close to peak computing power demand, which may be several

or even dozens of times higher than usual. This leads to hardware planning and
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deployment carried out according to peak computing power requirements, resulting in

underutilized computing equipment.

In addition, the configuration of computing resources such as CPUs, GPUs, and memory
inside data center servers are relatively fixed, but different computing tasks have different
resource requirements. Once the hardware configuration is pre-determined, certain
types of resources are frequently underutilized because computing power cannot be
flexibly scheduled. As observed in Alibaba and ByteDance data centers'", the
utilization of GPUs is about 40% when measured on the GPU card as a whole and only

10% when measured on the Streaming Multiprocessors (SMs) within the GPUs.

A better approach is to integrate computing resources and then allocate them to
computing tasks in a flexible and efficient manner. This idea of integration is often
referred to as resource pooling. The traditional resource pooling mechanism, including
computing and memory pooling, mainly focuses on resource sharing within a single
computing node. This sharing mode partitions CPUs, memories, and other resources to
different virtual machines through hypervisor technology and then implements multi-
tenant resource isolation and sharing of virtual machines on the physical host. Therefore,
the traditional pooling model does not break through the physical boundary of a single
node and cannot take full advantage of resource sharing among large-scale computing
nodes. In general, the challenges of existing distributed server architectures can be

summarized as follows:

® Inflexible computing resource configuration often results in unbalanced use of
resources in the system.
® Different applications have different usage patterns of computing resources, so it is

hard to accurately match the granularity of scheduled computing resources (such as

= 40 =
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GPU cards or SMs) with the computing power requirements of tasks, resulting in
underutilization and waste of computing resources.

® Efficient task mapping and optimization with distributed computing resources
requires sufficient understanding of difficult-to-ascertain proprietary architectures.
This challenge often leads to inefficient optimization of computing resources.

® The isolation and fault tolerance of computing resources are relatively poor with

current architectures, so it is difficult to achieve fine-grained resource sharing.

2.2.2 Disaggregated composable resource pooling

In response to the above problems, a new computing paradigm has emerged in the
industry: disaggregated composable computing resource pooling. The main goal of
computing resource pooling is to achieve scalability and flexibility of computing power
which in turn improves resource utilization by disaggregating computing resources and

dynamically sharing them.

The underlying technology of resource pooling is to disaggregate multiple resources
such as computing units, memory, and storage within the traditional computing
framework, and then form an independent resource pool for each type of resource.
Flexible allocation of computing resources and elastic expansion of computing power
are implemented through high-bandwidth, low-latency interconnection technologies

(such as the latest CXL standard) within and between resource pools.

=11 =
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Figure 2 Dynamic resource allocations in traditional vs disaggregated data centers

As shown in Figure 2, resource pooling in traditional data centers is typically limited
within a single physical server, easily leading to underutilization of local resources. With
the disaggregated composable architecture, each type of resource is clustered into its
own pool, such as a CPU pool (physical node 0), a memory pool (physical node 1), a
heterogeneous accelerator pool (physical node 2), and a storage pool (physical node 3).
The scheduling system allocates appropriate computing resources according to the
actual needs of computing tasks and recomposes computing instances (such as virtual
machine O, virtual machine 1, etc.) in a dynamic composition mode. With the new
disaggregation paradigm, the stranded resources, unused otherwise in the traditional
data center, can be recomposed to create a new virtual instance (VM4 in the right side

of Figure 2), resulting in 25% more VMs with the same provision of resources.
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However, the infrastructure of the current data centers makes it difficult to support
efficient computing resource pooling. This is because the physical distance between
large-scale distributed computing devices is relatively long, so Ethernet-based data
communication is usually deployed between racks in current data centers. Due to the
bandwidth limitation and high communication delay of Ethernet-based data
transportation, it is extremely challenging for data centers to achieve the near-linear
expansion of large-scale computing power. For example, as the HARP experiment!'?
shows, when there is a deterioration of network latency and bandwidth, there is a direct

and sizable deterioration in training performance.

2.3 Key challenges in computing power network

Computing Power Network not only needs continuous advancement of domain specific
architectures to scale up the computing power within a single node, but also needs to
scale out computing power through high performance interconnection technology for
expanding the compute capacity of resource pools. In addition, the hardware-software
co-design and co-optimizations of computing architectures are also a necessary means

to boost computing performance and energy efficiency.

Overall, the future technological breakthroughs needed for more powerful and efficient

computing power networks can be summarized as follows.

® New computing paradigm beyond the traditional CMOS technology, and a
heterogeneous computing architecture that better matches the compute demands

in industry-scale use scenarios.

~13-
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® High performance and scalable chiplet system, including physical layer innovations
beyond traditional electrical interconnection and easy-to-use software stack with
high adaptability.

® High-bandwidth, low-latency cross-rack interconnect technology, including

hardware innovation and advancement of interconnect protocols.

-14 -
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9 New Paradigm of Computing P

Breaking through bottlenecks and overcoming challenges at the data center requires
innovation in underlying technology. Large-scale integrated silicon photonics technology
has the potential to surpass traditional technologies both vertically by increasing single
node computing power and horizontally by improving the efficiency of large-scale
distributed computing. Lightelligence, founded in 2017, focuses on optoelectronic
hybrid computing solutions. Lightelligence is a pioneer in this field and has developed a
number of key technologies enabling efficient computing power networks. This chapter
will briefly introduce the new paradigm of data centers based on large-scale integrated
silicon photonics technology. More specific information will be discussed in thematic

white papers later in this series.

3.1 Scale-up in a single computing node

3.1.1  New principle of disruptive computation: Optical Multiply Accumulate (60MAC)

In order to maintain the continuous improvement of chip computing power, we need to
look at the underlying physical principles with a new lens. Digital chips are now limited
by the physical limits of the underlying component — the CMOS transistor. However,
optical signals and devices follow different physical principles. The interactions of optical
signals with scattering mediums are typically linear and therefore can be mapped as

linear calculations.

-15 -
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There are many phenomena of optical linear calculations in everyday life, for example,
the lens of an optical camera. An optical signal passes through the lens by completing
two two-dimensional spatial light Fourier transforms which are then imaged on a
photosensitive element. The camera lens can be regarded as a non-programmable
optical linear computing unit given these inputs and outputs. But for computing units

with practical value, the system must be programmable.

Given that matrix multiplication occupies a core position throughout current mainstream
data center computing tasks, such as artificial intelligence, numerical simulation, etc.,
efficient matrix multipliers that go beyond Moore's Law will have a wide range of
commercial prospects. Matrix multiplication, which can be regarded as parallel multiply
accumulate operations, is a typical linear operation that can be accelerated using
photonic computing units. Therefore, as Moore’s Law decelerates, programmable optical
Multiply Accumulate (oMAC)™ technology is expected to support the continuous
improvement of computing power, providing a new pathway for hardware infrastructure

in the digital economy era.

= 1 =
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Figure 3 Diagram of programmable oMAC system

Figure 3 shows one implementation of a programmable oMAC hardware. At the physical
level, the system includes optical and electronic chips packaged together by a 3D flip-
chip method. At the functional level, it includes three parts: signal input, signal
processing, and signal output. After the optical signal enters the optical chip, the input
vector b is converted into optical signals by the modulators, and these optical signals will
pass through the programmable optical matrix 4. The output optical signal € is the result
of the matrix operation. All optical devices are integrated on an optical chip, and the

logic control circuits and memory of the optical chip are deployed on the electronic chip.

The most significant advantage of photonic computing over traditional CMOS digjital
circuits is low latency. As shown in Figure 4, for a digital N X N matrix unit, the latency is
proportional to O(N). Some digital architectures that specifically optimize latency, can

achieve latency approaching 0(logN), particularly when the matrix size is small. For
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oMAC on the other hand, since the process of calculation is the process of transmitting
the optical signal array in the chip, the time of the calculation itself is the time of light
transmission across the chip, generally below 1 ns. The time consumed by oMAC
operations mainly comes from optoelectronic conversion and digital-to-analog
conversion, which is about several clocks and is independent from the size of the matrix,
which is equivalent to 0(1). Therefore, in the case of large N, the latency advantage of
photonic computing is obvious. Another dimension of oMAC's latency advantage is that
oMAC chips can achieve a global main frequency significantly greater than that of digital

chips at a given process node.

Systolic array latency oMAC latency
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Figure 4 Schematic diagram comparing systolic array and oMAC latencies

In addition to the latency advantage, photonic computing also has the characteristics of
low energy consumption. For an N x N digital matrix operation unit, its energy
consumption is k x N*, where k is related to the power consumption of a single

multiplication and accumulation. The overall power consumption is proportional to

RIS
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O(N?). For the optical matrix multiplier, its power consumption can be k; X N + k, x N?,
k, is related to the power consumption of the vector input and receiving end, and k, is
related to the power consumption of the matrix weight part. In the case that the update
speed of the matrix itself is much lower than the vector input, its energy consumption
mainly comes from the first half, so it is proportional to O(N). Under the premise that
optical devices and their control circuits are well optimized, the energy efficiency of
optical computing based on relatively traditional process nodes is comparable to or even

surpasses that of digital chips with advanced process nodes.

Optical computing has some caveats compared to digital computing. For example,
optical computing, as an analog calculation, cannot support floating-point numbers. For
fixed-point numbers, when accuracy exceeds 8 bits, the advantage of energy efficiency
diminishes. Therefore, algorithms based on floating-point numbers or fixed-point
numbers above 8 bits need to be quantitatively adjusted for photonic computing
hardware to show energy efficiency advantages. Also, the light source required for a
photonic computing system takes up a certain volume. The current development of light
source miniaturization can reduce the volume of the light source used in each server to

the same size as a few coins.

Fortunately, most mainstream artificial intelligence inference algorithms are developed
with fixed-point numbers below 8 bits and can take advantage of optical computing. For
scientific computing where high-precision floating-point numbers are required, software

optimizations will need to be developed to take advantage of optical computing.
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3.1.2 Enable high efficiency chiplet systems: Optical Network On Chip (oNOC)

In addition to optical computing technology, large-scale optoelectronic integration can
also enable large-scale chiplet systems. Chiplet systems improve the computing power
and efficiency of a single node through larger on-chip area and more heterogeneous

units. However, this scale-up of chiplet systems has bottlenecks in data communication.

Optical Waveguide EiC

Interconnect N\ | /— PIC

Laser

,——T1LGA
Substrate

(a) (b)

Figure 5 Cross-sectional view (a) and top view (b) of oNOC system where electronic

chips are interconnected by optical waveguide based links

One way to solve the data communication bottleneck is to use optical interconnect to
replace the electrical interconnect between electronic chips. As shown in Figure 5(a), two
electronic chips are stacked on the same photonic chip, and data communication
between electronic chips is performed by waveguide based optical links on the photonic
chip. Since optical interconnect is not sensitive to distance, the on-chip optical network
can enable many long-distance channels. As shown in Figure 5(b), the photonic chip can
be extended to the entire wafer, thereby realizing a wafer-level o0NOC system, which can
support tens of electronic chips, thereby achieving 2D torus or other types of isotropic

interconnect network topology (as shown by the orange line in Figure 5(b)). This could

= 20 =
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simplify mapping computing tasks to different chips and achieve higher computing
resource utilization. Moreover, oNOC could also provide high bandwidth and low latency
on-chip interconnect infrastructure with polymorphic computing architecture!® for future

Al accelerators.

3.2 Compute scale-out: Optical inter-chip Networking (oNET)

Currently, distributed computing based on Ethernet is limited by interconnect latency
and bandwidth. There is room for improvement in overall efficiency with optoelectronic
integration. As shown in Figure 6, in traditional data center architecture, the external
optical interconnect of computing chips needs to pass through a network interface card
(NIC). One way to optimize the latency and bandwidth of data interconnect is to remove
the NIC and directly connect the computing ASIC to an optical module through
electrical-to-optical/optical-to-electrical (EO/OE) conversion. This type of optical
interconnect concept optimized for computing has not yet formed an industry standard.
There are several different names for this type of optical interconnect including "Optical
I/0", "Optical Compute Interconnect” and so on'8'. |n the following text,
Lightelligence calls this type of optical interconnect between computing chips as "optical
inter-chip Networking", in short as "oNET", distinguishing from the aforementioned
"oNOC" technology. Realizing low-latency, high-bandwidth, and low-power inter-chip
optical networks requires innovations in both the physical layer and interconnect

protocols.

=2 =
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Electrical Signal Electrical Signal e Optical Signal
Compute
3 NIC -y -
ASIC Conversion

Compute Optical Interconnect

Electrical Signal Optical Signal

Compute - EO/OE ~
ASIC ‘ Conversion

Figure 6 Ethernet optical interconnect and compute optical interconnect

3.2.1 Physical layer innovation

In the interconnected system, the signal will be affected by loss and crosstalk during
propagation which will degrade the signal quality. A variety of techniques can improve
the signal quality and meet the requirements of bit error rate (BER). The most intuitive
way is to increase the strength of the signal itself, but this usually means higher power
consumption. Another approach is to use some error correction algorithms to reduce the
BER, such as forward error correction (FEC), but this usually means higher latency. For
example, the FEC algorithm currently used in Ethernet will take an additional latency of
100ns-200ns??. Therefore, to meet the requirements of low latency and low power
consumption at the same time, the best technique is to reduce the signal degradation

during propagation.

Computing chips usually output electrical signals, and the transmission loss of electrical

signals is sensitive to distance. Therefore, shortening the distance between computing
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chips and optical modules can help reduce system power consumption and latency. As
shown in Figure 7(a), in a traditional server, the external optical communication of the
computing chip usually uses a pluggable optical transceiver module. A better approach
is to place the optical module on the main PCB as shown in Figure 7(b), as close as
possible to the computing chip, thereby forming an on-board optics (OBO) module. The
ultimate solution is to package the optical transceiver module and the computing chip

on the same substrate. This approach is called Co-Packaged Optics (CPO).

Compute ASIC Pluggable Optics
(a) Substrate Substrate 3 —

Main PCB
Compute ASIC OBO
Substrate 7
(b) .
‘ Main PCB

CPO

Compute ASIC g
(© Substrate

f Main PCB ‘

Figure 7 Evolution of interconnect between computing chips and optical transceiver modules

For CPUs, communication is implemented through the PCle protocol. However, most of
the optical interconnect solutions in the current data center are designed for Ethernet.
Optical interconnect solutions based on PCle are not widely available. As shown in Table
1, compared to Ethernet, PCle applications have more channels, lower single-channel
bandwidth, different modulation methods, and much less tolerance to latency. Therefore,

current Ethernet-based optical interconnect solutions cannot be directly applied to PCle
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applications. A new optical interconnect standard optimized for PCle needs to be

developed.

Table 1 Comparison of Ethernet and PCle/CXL optical interconnect solutions

Ethernet(400G) PCle/CXL(Gen 5.0)

Data Rate 4x100G 16x32G
Modulation Format PAM4 NRZ
Latency Tolerance Not Sensitive <100ns

Given large numbers of PCle channels and lower latency tolerance requirement, silicon
photonics-based optical interconnect provides a better solution compared to others.
Figure 8 shows one type of system architecture. Optical interconnect is realized by a set
of 3D stacked electronic and photonic chips. The combined structure can be packaged
around the computing chip, realizing a co-packaged optics module. This type of optical

module can also be mounted on a PCB to form an OBO module.

Optical Fiber
EIC / EIC

Computeé hﬁ e e %\qu ﬁpute ASIC

-— |
2 LGA Substrate

LGA Substrate

Figure 8 System architecture of silicon photonics-based CPO solution
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3.2.2 Protocol layer innovation

The current mainstream distributed computing system mainly uses Ethernet-based
software and hardware ecosystems. There is a lot of headroom for improvement.
Realizing a distributed computing power network requires efficient data parallelism and
synchronization mechanisms. Current Ethernet-based solutions require the use of
memory barriers or software defined critical conditions, resulting in performance

overhead, long delays, and even deadlocks under complex control processes.

One way to solve these potential issues of Ethernet protocol is CXL protocol (Compute
Express Link). The protocol is based on the PCle physical layer and emphasizes high
bandwidth and low latency. CXL has gained widespread support since its first release in
2019. CXL board members include almost all major internet and semiconductor
companies. CXL provides efficient data synchronization, which can greatly simplify
software management and reduce the overhead of CPU network processing functions.
Point-to-point transmission latency can be reduced from the order of 10us with Ethernet

to the order of 100ns with CXL.

3.3 New paradigm of computing power network

As shown in Figure 9, photonic computing provides a computational power
enhancement path beyond Moore's Law; Wafer-level on-chip optical networks enable
the new paradigm of computing chips to cooperate effectively with traditional electrical
and memory chips to improve computing power in a single node. In addition, cross-

cabinet optical networks based on CXL protocol support efficient resource pooling,
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making large-scale distributed computing systems more efficient, flexible, and energy

efficient than ever before.

Lightelligence Solutions

Host Server XPU Server
~_E.-_

— -

E=E=ET

N ——— T —

e e oe ogogg
s auias Rasss 8 =8 =8 Ooouo

= a6
R ooz

oNOC enabled
DRAM Node Storage Node XPU System

N

Figure 9 Schematics of a new data center architecture with integrated

silicon photonics technology

By combining optical computing, on-chip and inter-chip optical networks, and other

technologies, a new paradigm of data center architecture will become possible.
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4 Opportunities a

Humans' thirst for computing power is never-ending.

As productivity of society continues to grow, more people and things are included in the
digital space. People generate more data and rely on more complex models to analyze
and use data to further improve productivity. However, the traditional way of improving
computing power is limited by physical principles, and new ways of improving computing

power will inevitably become the focus of the information technology industry.

Opportunities always come with challenges, and new technological revolutions are
brewing. Compared with traditional digital circuits, large-scale optoelectronic integration
based on silicon photonics introduces novel information processing and interconnection

capabilities, thus providing a new computing paradigm.

Like the development of all new technologies in history, this new computing paradigm
will go through a transitional stage in supply chain, ecosystem, and business models.
Innovations are needed from low-level components all the way to top-level application
software development. However, despite challenges, the future looks bright with the

promise to revolutionize the way people compute.
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Glossary
Al Artificial Intelligence
ASIC Application Specific Integrated Circuit
BER Bit Error Rate
BOW Bunch of Wires
CMOS Complementary Metal-Oxide-Semiconductor
CPN Computing Power Network
CPO Co-Packaged Optics
CPU Central Processing Unit
CXL Compute Express Link
DSA Domain Specific Architecture
EIC Electronic Integrated Circuit
FEC Forward Error Correction
GPU Graphics Processing Unit
HBM High Bandwidth Memory
ILP Instruction-Level Parallelism
(@) Input Output
LGA Land Grid Array
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NIC Network Interface Card
NLP Natural Language Processing
OBO On-Board Optics
oMAC Optical Multiply Accumulate
oNET Optical inter-chip Networking
oNOC Optical Network On Chip
OPU Optical Processing Unit
PCle Peripheral Component Interconnect Express
PIC Photonic Integrated Circuit
RX Receiver
SIMD Single Instruction Multiple Data
SM Streaming Multiprocessors
SRAM Static Random-Access Memory
TLP Thread-Level Parallelism
TPU Tensor Processing Unit
X Transmitter
UCle Universal Chiplet Interconnect Express
VM Virtual Machine
WSE Wafer Scale Engine
XPU CPU, GPU, ...
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