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With the explosive growth of artificial intelligence (AI) applications such as intelligent 

transportation, industrial brain, autonomous driving, and the internet of things (IoT), 

human society generates massive amounts of data every day. To analyze and extract 

valuable information from this data, powerful data storage, transmission and processing 

capabilities are required, posing unprecedented challenges to the computing 

capabilities of existing data centers and edge devices. Meanwhile, AI models are rapidly 

evolving and expanding in attempts to leverage this data. Further, the explosive growth 

of model parameters means greater computing power demand for each unit of input 

data to the model. According to the data published by OpenAI, as shown in Figure 1, in 

recent years, the average size of AI models increases tenfold every year. The demand for 

AI training follows a similar trend[1]. 

 
Figure 1  AI Model size and compute usage in training AI systems[1] 
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However, performance growth of traditional computing chips has encountered 

bottlenecks. Since the start of the semiconductor industry 60 years ago, computing 

power improvement can be described by Moore's Law and Dennard Scaling. Moore's 

Law predicts that transistor density doubles every 18 months, while Dennard Scaling[2] 

states that power density remains unchanged as transistor density improves. The 

combination of Moore's Law and Dennard Scaling allows CMOS chips to continuously 

improve computing power while maintaining constant energy and area consumption. 

However, as the chip manufacturing process moves to 5nm and 3nm, transistor density 

is close to its physical limit. Moore's Law is slowing down and is expected to end in the 

2020s[3]. Dennard Scaling ended as early as 2004[4], resulting in power supply and heat 

dissipation challenges as transistor density improves. This is also known as the "Power 

Wall". In addition, the tape-out and design costs of advanced processes are getting 

higher and higher, which creates a "Cost Wall". The traditional single-chip computing 

power improvement path is now unsustainable. 

Even if Moore’s Law and Dennard Scaling continue, the exponentially growing demand 

for computing power cannot be met by discrete computing systems. The consumption 

of resources to meet computing demand is increasing every day. It is necessary to deploy 

large-scale distributed computing systems in data centers. 

This whitepaper will first introduce the semiconductor industry's existing efforts to 

increase and better utilize computing power, as well as the challenges encountered to 

do so. Afterwards, a new data center paradigm based on large-scale optoelectronic 

integration technology will be proposed. This new paradigm aims to provide a new idea 

for the evolution of next-generation data centers. 
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Hyperscalers and data centers have made substantial efforts to improve computing 

power and efficiency. Among them, the Computing Power Network (CPN) has become 

one of the most widely recognized concepts in the global community[5]. CPN is a new 

type of information infrastructure that flexibly allocates and schedules computing, 

storage, and network resources on demand according to business needs. Its ultimate 

goal is to abstract hardware resources into computing power so that users can purchase 

computing power from data centers according to actual computing needs without 

buying or leasing hardware equipment. Thus, using computing power is equally 

convenient as using other utility services (such as water, electricity, and gas). 

To realize this vision, CPN may be composed of massive high-performance computing 

nodes with efficient data interconnection between nodes. While each computing node 

is scaled up to construct a solid computation foundation of CPN, the computing power 

can also be scaled out through efficient data interconnection to form a huge computing 

capacity. CPN is expected not only to solve the problems of low computing power 

utilization and scalability, but also address the difficulties of computing power migration 

and usability. Through the flexible scheduling of hardware resources, CPN can realize 

more fine-grained sharing within the network. This chapter will briefly introduce the 

current challenges faced by the industry in terms of scaling-up and scaling-out of 

computing power. 
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2.1 Scale-up in a single computing node 

In data centers, a computing node usually refers to a single server with one or two CPU 

sockets that may contain many CPU cores. As the increase of transistor density slows 

down, the performance improvement associated with semiconductor process advances 

is becoming more and more limited. Thus, various ideas have been proposed to improve 

computing power in a single node. The first is to prioritize higher computing efficiency 

over the versatility of computation found in CPUs through chip-level architecture 

innovations. Based upon these innovations, some researchers even seek to go beyond 

traditional von Neumann architecture and CMOS technology, and search for disruptive 

new computing paradigms to boost computing power far beyond Moore's Law. Another 

strategy is to leverage advanced packaging technology and put multiple chiplets into a 

single package which breaks the performance barrier imposed by the reticle size and 

achieves higher computing power. 

2.1.1 Heterogeneous computing architecture innovations 

Early architectural innovations were mainly driven by increasing the instruction-level 

parallelism (ILP) in general-purpose computing architectures to take advantage of on-

chip transistor resources brought about by Moore's Law. For example, with abundant 

transistor resources, the superscalar CPU architecture can enable multiple-instruction 

issuing and out-of-order execution. Long and deep pipelining allows more computing 

operations on a single unit input of data. At the same time, deepening of the pipeline 

reduces compute operations in each pipeline stage, thereby achieving a substantial 

increase of CPU frequency.  
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As semiconductor technology evolves, the increase of chip area also enables more logic 

functions to be integrated on the chip. These logic functions, including more hierarchical 

data caches, larger data buffering, and data prefetching blocks, improve performance 

which has been long troubled by the “Memory Wall” problem due to the unbalanced 

development of computing and memory speeds. Recently, large-scale efficient data 

transfer technology has become a new driving force for performance advancements. 

Innovative technologies, such as High Bandwidth Memory (HBM), have brought a new 

wave of performance improvements to computing architectures. This trend is well 

reflected in Google's paper[6] which summarizes the evolution of several generations of 

Tensor Processing Unit (TPU) architectures.  

Finally, the transistor boom also makes it possible to enable multi-threading, multi-core, 

and context-based kilo-threading architectures. In combination with single instruction 

multiple data (SIMD) and other vectorization technologies, thread-level parallelism (TLP) 

has resulted in a multiple magnitude performance leap in modern computing 

architectures. 

Built on top of these general-purpose architecture improvements, domain specific 

architecture (DSA) has also achieved an accelerated pace of development. As 

technological innovations such as artificial intelligence, 5G, autonomous driving, and 

VR/AR continue to advance, the requirements for chip computing power, functions, 

power consumption, cost, and security in different applications are increasingly 

diversified. Under the trend of wide-ranging computing power requirements, DSA 

emerges timely as the customized architecture targeted for certain specific application 

domains. It can include special computing units with unique parallel mechanisms, data 

types, and domain-specific languages, etc. The DSA architecture achieves performance 
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speed-ups by sacrificing versatility of the architecture to effectively utilize native 

computing capabilities of the hardware, thus gaining better energy efficiency than 

general-purpose computing architectures.  

For example, Nvidia's latest Hopper graphics processing unit (GPU)[7], based on a typical 

TLP architecture, uses more powerful Tensor Cores to conduct matrix multiplications. 

Moreover, Tensor Core has added more domain-specific technologies to scale up 

computing power, including fine-grained sparse computing and dynamic programming 

algorithm optimization. Compared with its previous generation A100 GPU, the Hopper 

H100 GPU has a performance improvement of 2 to 4 times on a set of AI training tasks. 

Another DSA example is Google's TPU, in which the systolic array is designed to optimize 

matrix multiplication. Systolic array significantly improves the compute density by 

increasing multiple operations on a unit input of data while alleviating the Memory Wall 

effect.  

However, due to the nature of customization, domain-specific architecture usually lacks 

computational completeness. Therefore, the heterogeneous computing architecture is 

used to combine CPUs and multiple types of DSAs. By allowing each DSA to maximize 

performance in its own domain, heterogeneous computing achieves the highest 

performance and best energy-efficient computing. 

While domain-specific architecture has achieved a substantial increase in computing 

power, it is still limited by the underlying computing components and von Neumann 

architecture. The underlying components in traditional computer chips are based on 

CMOS transistors. The core working mechanism of CMOS is to control the current in 

transistors by voltage signals.  
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However, with improvement of the CMOS manufacturing process, transistor size is 

shrinking and the quantum tunneling effect reduces the efficiency of controlling current. 

Thus, new underlying computing mechanisms are required to break through this 

bottleneck. 

At the same time, traditional computer design is typically based on von Neumann 

architecture, where computing and data are separated into different functional blocks. 

After data is moved to the computing unit through sequential control logic, calculations 

are performed. The main issue of this architecture is that the calculation is delayed due 

to data fetch and data movement, which also increases power consumption. These 

effects gradually reveal the Memory Wall problem. Even though modern architecture 

innovations continue to advance through vectorization, hyper-threading, pipelined 

parallelism, and multi-core architectures, the performance potential in von Neumann 

architecture is getting smaller and smaller. 

Along with general architecture innovations, non-von Neumann architecture has begun 

to flourish. Given that non-von Neumann architectures are no longer based on any 

sequential control flow execution (e.g., biological computing and quantum computing), 

or often are derived to overcome the core bottleneck of von Neumann architectures (e.g., 

memristor-based in-memory computing), these novel architectures prove disruptive and 

create a huge space for performance and energy efficiency improvement due to their 

new underlying computing mechanisms. For example, the near-memory computing 

engine[8], based on 3D hybrid packaging, can dramatically improve the performance of 

AI accelerators on recommendation models by directly connecting multi-storage 

memory to computing logic units. 
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2.1.2 Chiplet architecture 

Because the increase of transistor density is gradually slowing, boosting computing 

power within a single package can only be achieved by expanding the total chip area 

once architecture improvements are exhausted. However, due to limitations of the 

CMOS process, maximum area of a single chip is capped by the size of the reticle, which 

is generally around 800mm2. To further expand the total area of the chip, it is necessary 

to find new ways to break through the upper limit of the area of a single chip, thus 

emerges the new idea of chiplet systems. 

Thanks to the progress of advanced packaging technologies, it is possible to package 

multiple chiplets with domain-specific functions on the same substrate. In the past three 

years, the world's leading chip companies have increasingly been deploying chiplet 

architectures to high-end computing systems. For instance, Intel's Ponte Vecchio GPU[9] 

consists of more than 40 dies with a total area of over 3,000 mm2. Similarly, Cerebras' 

Wafer Scale Engine (WSE)[10] has an area of over 40,000 mm2, which is 50 times larger 

than the area of the current reticle size.  

In addition to increasing the total chip area, modularity of chiplets also allow computing 

nodes of different processes or different fabs to be contained within a single package. 

This not only enables flexibility of disaggregated architecture design, but also greatly 

improves yield and reduces manufacturing costs. Furthermore, chiplet architecture helps 

realize domain-specific heterogeneous computing at the chip level, which is more 

accommodating to various computing tasks, as opposed to the card level. 

The current chiplet products are primarily based on proprietary architectures. However, 

there are many industrial organizations (such as UCIe and BOW) actively promoting 
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chiplet interconnection standards for on-chip heterogeneous computing. For example, 

in 2021, Google released the specification of Open Chiplet architecture[11], to further 

promote development of the chiplet ecosystem. 

As total area of the chip becomes larger, the distance of data transmission by electricity 

also increases, as does latency and energy consumption of data transfer. In pure digital 

circuits, to reduce the cost of data transfer, each computing unit generally only transmits 

data to its nearest neighboring computing units. Therefore, data transfer across multiple 

computing units often requires a few hops. Since a large computing task usually needs 

to be mapped to multiple computing units, the process requires very complex algorithms 

that optimize mapping to avoid long-distance data transportation. 

2.2 Scale-out with massive computing nodes 

2.2.1 Challenges of current large-scale distributed computing 

Architectural innovation and computing power improvement within a single computing 

node alone are insufficient to meet the growing demand for large-scale compute, 

therefore, tens of thousands of computing devices are often deployed in data centers. 

However, simply stacking up of many computing nodes doesn’t necessarily lead to 

efficient use of computing resources due to network congestion. Especially with data-

intensive applications, multiple parallel tasks conflict with each other in the 

communication network, which causes additional delay and performance loss, resulting 

in low resource utilization of the overall system. Moreover, data centers often plan the 

hardware architecture for close to peak computing power demand, which may be several 

or even dozens of times higher than usual. This leads to hardware planning and 



 

Large-scale optoelectronic integrated enabling intelligent computing power networks  

 
- 10 - 

deployment carried out according to peak computing power requirements, resulting in 

underutilized computing equipment.  

In addition, the configuration of computing resources such as CPUs, GPUs, and memory 

inside data center servers are relatively fixed, but different computing tasks have different 

resource requirements. Once the hardware configuration is pre-determined, certain 

types of resources are frequently underutilized because computing power cannot be 

flexibly scheduled. As observed in Alibaba and ByteDance data centers[12,13], the 

utilization of GPUs is about 40% when measured on the GPU card as a whole and only 

10% when measured on the Streaming Multiprocessors (SMs) within the GPUs. 

A better approach is to integrate computing resources and then allocate them to 

computing tasks in a flexible and efficient manner. This idea of integration is often 

referred to as resource pooling. The traditional resource pooling mechanism, including 

computing and memory pooling, mainly focuses on resource sharing within a single 

computing node. This sharing mode partitions CPUs, memories, and other resources to 

different virtual machines through hypervisor technology and then implements multi-

tenant resource isolation and sharing of virtual machines on the physical host. Therefore, 

the traditional pooling model does not break through the physical boundary of a single 

node and cannot take full advantage of resource sharing among large-scale computing 

nodes. In general, the challenges of existing distributed server architectures can be 

summarized as follows: 

l Inflexible computing resource configuration often results in unbalanced use of 

resources in the system. 

l Different applications have different usage patterns of computing resources, so it is 

hard to accurately match the granularity of scheduled computing resources (such as 
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GPU cards or SMs) with the computing power requirements of tasks, resulting in 

underutilization and waste of computing resources. 

l Efficient task mapping and optimization with distributed computing resources 

requires sufficient understanding of difficult-to-ascertain proprietary architectures. 

This challenge often leads to inefficient optimization of computing resources. 

l The isolation and fault tolerance of computing resources are relatively poor with 

current architectures, so it is difficult to achieve fine-grained resource sharing. 

2.2.2 Disaggregated composable resource pooling 

In response to the above problems, a new computing paradigm has emerged in the 

industry: disaggregated composable computing resource pooling. The main goal of 

computing resource pooling is to achieve scalability and flexibility of computing power 

which in turn improves resource utilization by disaggregating computing resources and 

dynamically sharing them. 

The underlying technology of resource pooling is to disaggregate multiple resources 

such as computing units, memory, and storage within the traditional computing 

framework, and then form an independent resource pool for each type of resource. 

Flexible allocation of computing resources and elastic expansion of computing power 

are implemented through high-bandwidth, low-latency interconnection technologies 

(such as the latest CXL standard[14]) within and between resource pools.  



 

Large-scale optoelectronic integrated enabling intelligent computing power networks  

 
- 12 - 

 
Figure 2  Dynamic resource allocations in traditional vs disaggregated data centers 

As shown in Figure 2, resource pooling in traditional data centers is typically limited 

within a single physical server, easily leading to underutilization of local resources. With 

the disaggregated composable architecture, each type of resource is clustered into its 

own pool, such as a CPU pool (physical node 0), a memory pool (physical node 1), a 

heterogeneous accelerator pool (physical node 2), and a storage pool (physical node 3). 

The scheduling system allocates appropriate computing resources according to the 

actual needs of computing tasks and recomposes computing instances (such as virtual 

machine 0, virtual machine 1, etc.) in a dynamic composition mode. With the new 

disaggregation paradigm, the stranded resources, unused otherwise in the traditional 

data center, can be recomposed to create a new virtual instance (VM4 in the right side 

of Figure 2), resulting in 25% more VMs with the same provision of resources. 
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However, the infrastructure of the current data centers makes it difficult to support 

efficient computing resource pooling. This is because the physical distance between 

large-scale distributed computing devices is relatively long, so Ethernet-based data 

communication is usually deployed between racks in current data centers. Due to the 

bandwidth limitation and high communication delay of Ethernet-based data 

transportation, it is extremely challenging for data centers to achieve the near-linear 

expansion of large-scale computing power. For example, as the HARP experiment[12] 

shows, when there is a deterioration of network latency and bandwidth, there is a direct 

and sizable deterioration in training performance.  

2.3 Key challenges in computing power network 

Computing Power Network not only needs continuous advancement of domain specific 

architectures to scale up the computing power within a single node, but also needs to 

scale out computing power through high performance interconnection technology for 

expanding the compute capacity of resource pools. In addition, the hardware-software 

co-design and co-optimizations of computing architectures are also a necessary means 

to boost computing performance and energy efficiency.  

Overall, the future technological breakthroughs needed for more powerful and efficient 

computing power networks can be summarized as follows. 

l New computing paradigm beyond the traditional CMOS technology, and a 

heterogeneous computing architecture that better matches the compute demands 

in industry-scale use scenarios. 
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l High performance and scalable chiplet system, including physical layer innovations 

beyond traditional electrical interconnection and easy-to-use software stack with 

high adaptability. 

l High-bandwidth, low-latency cross-rack interconnect technology, including 

hardware innovation and advancement of interconnect protocols. 
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Breaking through bottlenecks and overcoming challenges at the data center requires 

innovation in underlying technology. Large-scale integrated silicon photonics technology 

has the potential to surpass traditional technologies both vertically by increasing single 

node computing power and horizontally by improving the efficiency of large-scale 

distributed computing. Lightelligence, founded in 2017, focuses on optoelectronic 

hybrid computing solutions. Lightelligence is a pioneer in this field and has developed a 

number of key technologies enabling efficient computing power networks. This chapter 

will briefly introduce the new paradigm of data centers based on large-scale integrated 

silicon photonics technology. More specific information will be discussed in thematic 

white papers later in this series. 

3.1 Scale-up in a single computing node 

3.1.1 New principle of disruptive computation: Optical Multiply Accumulate (oMAC) 

In order to maintain the continuous improvement of chip computing power, we need to 

look at the underlying physical principles with a new lens. Digital chips are now limited 

by the physical limits of the underlying component – the CMOS transistor. However, 

optical signals and devices follow different physical principles. The interactions of optical 

signals with scattering mediums are typically linear and therefore can be mapped as 

linear calculations.  
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There are many phenomena of optical linear calculations in everyday life, for example, 

the lens of an optical camera. An optical signal passes through the lens by completing 

two two-dimensional spatial light Fourier transforms which are then imaged on a 

photosensitive element. The camera lens can be regarded as a non-programmable 

optical linear computing unit given these inputs and outputs. But for computing units 

with practical value, the system must be programmable. 

Given that matrix multiplication occupies a core position throughout current mainstream 

data center computing tasks, such as artificial intelligence, numerical simulation, etc., 

efficient matrix multipliers that go beyond Moore's Law will have a wide range of 

commercial prospects. Matrix multiplication, which can be regarded as parallel multiply 

accumulate operations, is a typical linear operation that can be accelerated using 

photonic computing units. Therefore, as Moore’s Law decelerates, programmable optical 

Multiply Accumulate (oMAC)[15] technology is expected to support the continuous 

improvement of computing power, providing a new pathway for hardware infrastructure 

in the digital economy era.  



 

Large-scale optoelectronic integrated enabling intelligent computing power networks 

 
- 17 - 

 
Figure 3  Diagram of programmable oMAC system 

Figure 3 shows one implementation of a programmable oMAC hardware. At the physical 

level, the system includes optical and electronic chips packaged together by a 3D flip-

chip method. At the functional level, it includes three parts: signal input, signal 

processing, and signal output. After the optical signal enters the optical chip, the input 

vector 𝑏"⃑  is converted into optical signals by the modulators, and these optical signals will 

pass through the programmable optical matrix 𝐴. The output optical signal 𝒄"⃑  is the result 

of the matrix operation. All optical devices are integrated on an optical chip, and the 

logic control circuits and memory of the optical chip are deployed on the electronic chip. 

The most significant advantage of photonic computing over traditional CMOS digital 

circuits is low latency. As shown in Figure 4, for a digital 𝑁 × 𝑁 matrix unit, the latency is 

proportional to 𝑂(𝑁). Some digital architectures that specifically optimize latency, can 

achieve latency approaching 𝑂(log𝑁), particularly when the matrix size is small. For 
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oMAC on the other hand, since the process of calculation is the process of transmitting 

the optical signal array in the chip, the time of the calculation itself is the time of light 

transmission across the chip, generally below 1 ns. The time consumed by oMAC 

operations mainly comes from optoelectronic conversion and digital-to-analog 

conversion, which is about several clocks and is independent from the size of the matrix, 

which is equivalent to 𝑂(1). Therefore, in the case of large 𝑁, the latency advantage of 

photonic computing is obvious. Another dimension of oMAC’s latency advantage is that 

oMAC chips can achieve a global main frequency significantly greater than that of digital 

chips at a given process node.  

 
Figure 4  Schematic diagram comparing systolic array and oMAC latencies 

In addition to the latency advantage, photonic computing also has the characteristics of 

low energy consumption. For an 𝑁 × 𝑁  digital matrix operation unit, its energy 

consumption is 𝑘 × 𝑁! , where 𝑘  is related to the power consumption of a single 

multiplication and accumulation. The overall power consumption is proportional to 
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𝑂(𝑁!). For the optical matrix multiplier, its power consumption can be 𝑘" × 𝑁 + 𝑘! × 𝑁!, 

𝑘" is related to the power consumption of the vector input and receiving end, and 𝑘! is 

related to the power consumption of the matrix weight part. In the case that the update 

speed of the matrix itself is much lower than the vector input, its energy consumption 

mainly comes from the first half, so it is proportional to 𝑂(𝑁). Under the premise that 

optical devices and their control circuits are well optimized, the energy efficiency of 

optical computing based on relatively traditional process nodes is comparable to or even 

surpasses that of digital chips with advanced process nodes. 

Optical computing has some caveats compared to digital computing. For example, 

optical computing, as an analog calculation, cannot support floating-point numbers. For 

fixed-point numbers, when accuracy exceeds 8 bits, the advantage of energy efficiency 

diminishes. Therefore, algorithms based on floating-point numbers or fixed-point 

numbers above 8 bits need to be quantitatively adjusted for photonic computing 

hardware to show energy efficiency advantages. Also, the light source required for a 

photonic computing system takes up a certain volume. The current development of light 

source miniaturization can reduce the volume of the light source used in each server to 

the same size as a few coins.  

Fortunately, most mainstream artificial intelligence inference algorithms are developed 

with fixed-point numbers below 8 bits and can take advantage of optical computing. For 

scientific computing where high-precision floating-point numbers are required, software 

optimizations will need to be developed to take advantage of optical computing.  



 

Large-scale optoelectronic integrated enabling intelligent computing power networks  

 
- 20 - 

3.1.2 Enable high efficiency chiplet systems: Optical Network On Chip (oNOC) 

In addition to optical computing technology, large-scale optoelectronic integration can 

also enable large-scale chiplet systems. Chiplet systems improve the computing power 

and efficiency of a single node through larger on-chip area and more heterogeneous 

units. However, this scale-up of chiplet systems has bottlenecks in data communication. 

 
Figure 5   Cross-sectional view (a) and top view (b) of oNOC system where electronic 

chips are interconnected by optical waveguide based links 

One way to solve the data communication bottleneck is to use optical interconnect to 

replace the electrical interconnect between electronic chips. As shown in Figure 5(a), two 

electronic chips are stacked on the same photonic chip, and data communication 

between electronic chips is performed by waveguide based optical links on the photonic 

chip. Since optical interconnect is not sensitive to distance, the on-chip optical network 

can enable many long-distance channels. As shown in Figure 5(b), the photonic chip can 

be extended to the entire wafer, thereby realizing a wafer-level oNOC system, which can 

support tens of electronic chips, thereby achieving 2D torus or other types of isotropic 

interconnect network topology (as shown by the orange line in Figure 5(b)). This could 
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simplify mapping computing tasks to different chips and achieve higher computing 

resource utilization. Moreover, oNOC could also provide high bandwidth and low latency 

on-chip interconnect infrastructure with polymorphic computing architecture[16] for future 

AI accelerators. 

3.2 Compute scale-out: Optical inter-chip Networking (oNET)  

Currently, distributed computing based on Ethernet is limited by interconnect latency 

and bandwidth. There is room for improvement in overall efficiency with optoelectronic 

integration. As shown in Figure 6, in traditional data center architecture, the external 

optical interconnect of computing chips needs to pass through a network interface card 

(NIC).  One way to optimize the latency and bandwidth of data interconnect is to remove 

the NIC and directly connect the computing ASIC to an optical module through 

electrical-to-optical/optical-to-electrical (EO/OE) conversion. This type of optical 

interconnect concept optimized for computing has not yet formed an industry standard. 

There are several different names for this type of optical interconnect including "Optical 

I/O", "Optical Compute Interconnect" and so on[17,18,19]. In the following text, 

Lightelligence calls this type of optical interconnect between computing chips as "optical 

inter-chip Networking", in short as "oNET", distinguishing from the aforementioned 

"oNOC" technology. Realizing low-latency, high-bandwidth, and low-power inter-chip 

optical networks requires innovations in both the physical layer and interconnect 

protocols. 
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Figure 6  Ethernet optical interconnect and compute optical interconnect 

3.2.1 Physical layer innovation 

In the interconnected system, the signal will be affected by loss and crosstalk during 

propagation which will degrade the signal quality. A variety of techniques can improve 

the signal quality and meet the requirements of bit error rate (BER). The most intuitive 

way is to increase the strength of the signal itself, but this usually means higher power 

consumption. Another approach is to use some error correction algorithms to reduce the 

BER, such as forward error correction (FEC), but this usually means higher latency. For 

example, the FEC algorithm currently used in Ethernet will take an additional latency of 

100ns-200ns[20]. Therefore, to meet the requirements of low latency and low power 

consumption at the same time, the best technique is to reduce the signal degradation 

during propagation. 

Computing chips usually output electrical signals, and the transmission loss of electrical 

signals is sensitive to distance. Therefore, shortening the distance between computing 
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chips and optical modules can help reduce system power consumption and latency. As 

shown in Figure 7(a), in a traditional server, the external optical communication of the 

computing chip usually uses a pluggable optical transceiver module. A better approach 

is to place the optical module on the main PCB as shown in Figure 7(b), as close as 

possible to the computing chip, thereby forming an on-board optics (OBO) module. The 

ultimate solution is to package the optical transceiver module and the computing chip 

on the same substrate. This approach is called Co-Packaged Optics (CPO). 

 

Figure 7  Evolution of interconnect between computing chips and optical transceiver modules 

For CPUs, communication is implemented through the PCIe protocol. However, most of 

the optical interconnect solutions in the current data center are designed for Ethernet. 

Optical interconnect solutions based on PCIe are not widely available. As shown in Table 

1, compared to Ethernet, PCIe applications have more channels, lower single-channel 

bandwidth, different modulation methods, and much less tolerance to latency. Therefore, 

current Ethernet-based optical interconnect solutions cannot be directly applied to PCIe 
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applications. A new optical interconnect standard optimized for PCIe needs to be 

developed. 

Table 1  Comparison of Ethernet and PCIe/CXL optical interconnect solutions 

 

Given large numbers of PCIe channels and lower latency tolerance requirement, silicon 

photonics-based optical interconnect provides a better solution compared to others. 

Figure 8 shows one type of system architecture. Optical interconnect is realized by a set 

of 3D stacked electronic and photonic chips. The combined structure can be packaged 

around the computing chip, realizing a co-packaged optics module. This type of optical 

module can also be mounted on a PCB to form an OBO module. 

 
Figure 8  System architecture of silicon photonics-based CPO solution 
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3.2.2 Protocol layer innovation  

The current mainstream distributed computing system mainly uses Ethernet-based 

software and hardware ecosystems. There is a lot of headroom for improvement. 

Realizing a distributed computing power network requires efficient data parallelism and 

synchronization mechanisms. Current Ethernet-based solutions require the use of 

memory barriers or software defined critical conditions, resulting in performance 

overhead, long delays, and even deadlocks under complex control processes. 

One way to solve these potential issues of Ethernet protocol is CXL protocol (Compute 

Express Link). The protocol is based on the PCIe physical layer and emphasizes high 

bandwidth and low latency. CXL has gained widespread support since its first release in 

2019. CXL board members include almost all major internet and semiconductor 

companies. CXL provides efficient data synchronization, which can greatly simplify 

software management and reduce the overhead of CPU network processing functions. 

Point-to-point transmission latency can be reduced from the order of 10us with Ethernet 

to the order of 100ns with CXL. 

3.3 New paradigm of computing power network 

As shown in Figure 9, photonic computing provides a computational power 

enhancement path beyond Moore's Law; Wafer-level on-chip optical networks enable 

the new paradigm of computing chips to cooperate effectively with traditional electrical 

and memory chips to improve computing power in a single node. In addition, cross-

cabinet optical networks based on CXL protocol support efficient resource pooling, 
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making large-scale distributed computing systems more efficient, flexible, and energy 

efficient than ever before. 

 
Figure 9  Schematics of a new data center architecture with integrated 

silicon photonics technology 

By combining optical computing, on-chip and inter-chip optical networks, and other 

technologies, a new paradigm of data center architecture will become possible.  
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Humans' thirst for computing power is never-ending. 

As productivity of society continues to grow, more people and things are included in the 

digital space. People generate more data and rely on more complex models to analyze 

and use data to further improve productivity. However, the traditional way of improving 

computing power is limited by physical principles, and new ways of improving computing 

power will inevitably become the focus of the information technology industry. 

Opportunities always come with challenges, and new technological revolutions are 

brewing. Compared with traditional digital circuits, large-scale optoelectronic integration 

based on silicon photonics introduces novel information processing and interconnection 

capabilities, thus providing a new computing paradigm. 

Like the development of all new technologies in history, this new computing paradigm 

will go through a transitional stage in supply chain, ecosystem, and business models. 

Innovations are needed from low-level components all the way to top-level application 

software development. However, despite challenges, the future looks bright with the 

promise to revolutionize the way people compute.  
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Abbreviation Full name  

AI Artificial Intelligence 

ASIC Application Specific Integrated Circuit 

BER Bit Error Rate 

BOW Bunch of Wires 

CMOS Complementary Metal-Oxide-Semiconductor 

CPN Computing Power Network 

CPO Co-Packaged Optics 

CPU Central Processing Unit 

CXL Compute Express Link 

DSA Domain Specific Architecture 

EIC Electronic Integrated Circuit 

FEC Forward Error Correction 

GPU Graphics Processing Unit 

HBM High Bandwidth Memory 

ILP Instruction-Level Parallelism 

IO Input Output 

LGA Land Grid Array 

Abbreviation 

 

Full name 
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NIC Network Interface Card 

NLP Natural Language Processing 

OBO On-Board Optics 

oMAC Optical Multiply Accumulate 

oNET Optical inter-chip Networking 

oNOC Optical Network On Chip 

OPU Optical Processing Unit 

PCIe Peripheral Component Interconnect Express 

PIC Photonic Integrated Circuit 

RX Receiver 

SIMD Single Instruction Multiple Data 

SM Streaming Multiprocessors 

SRAM Static Random-Access Memory 

TLP Thread-Level Parallelism 

TPU Tensor Processing Unit 

TX Transmitter 

UCIe Universal Chiplet Interconnect Express 

VM Virtual Machine 

WSE Wafer Scale Engine 

XPU CPU, GPU, ... 

  



 

Large-scale optoelectronic integrated enabling intelligent computing power networks  

 
- 30 - 

[1] Dario Amodei, Danny Hernandez, et al. “AI and compute,” 2019 [Online]. Available: 

https://openai.com/blog/ai-and-compute/ 

[2] Dennard, Robert H., et al. "Design of ion-implanted MOSFET's with very small 

physical dimensions," IEEE Journal of solid-state circuits 9.5 (1974): 256-268. 

[3] David Rotman, “We’re not prepared for the end of Moore’s Law,” MIT Tech Review, 

2020 [Online]. Available: https://www.technologyreview.com/2020/02/24/905789/-

were-not-prepared-for-the-end-of-moores-law/ 

[4] Johnsson, L., and Gilbert Netzer. "The impact of Moore's Law and loss of Dennard 

scaling: Are DSP SoCs an energy efficient alternative to x86 SoCs?," Journal of 

Physics: Conference Series. Vol. 762. No. 1. IOP Publishing, 2016 

[5] Yukun Sun, et al, “Computing Power Network: A Survey,” 2022 [Online]. Available: 

https://arxiv.org/pdf/2210.06080.pdf 

[6] Norman P. Jouppi et al., “Ten Lessons From Three Generations Shaped Google’s 

TPUv4i : Industrial Product,” ACM/IEEE 48th Annual International Symposium on 

Computer Architecture (ISCA), pp. 1-14,2021 

[7] Micheal Andersch, et al, “Nvidia Hopper Architecture In-Depth”, 2022 [Online]. 

Available: https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/ 

[8] Dimin Niu, et al, “184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with 

Process-Near- Memory Engine for Recommendation System,” ISSCC, 2022 

[9] Wilfred Gomes et al., “Ponte Vecchio: A Multi-Tile 3D Stacked Processor for Exascale 

Computing,” ISSCC, 2022 



 

Large-scale optoelectronic integrated enabling intelligent computing power networks 

 
- 31 - 

[10] Sean Lie, “Wafer-Scale Deep Learning,” Hot Chips, 2019 

[11] Ricmib, ”OCP Google OpenChiplet spec,” 2021 [Online]. Available: 

https://github.com/google/open-chiplet/blob/main/docs/open-chiplet.md 

[12] Pengfei Fan, et al., “HARP: An efficient and elastic GPU-sharing system,” O’Reilly 

Conference TensorFlow World, 2019 

[13] Yibo Zhu, “Maximizing GPU utilization in Large Scale Machine Learning 

Infrastructure,” Nvidia GTC, 2022 

[14] CXL Consortium,”Compute Express Link: The breakthrough CPU-to-Device 

Interconnect,” [Online]. Available: https://www.computeexpresslink.org/ 

[15] Yichen Shen, et al., “Deep learning with coherent nanophotonic circuits,” Nature 

Photon 11, 441–446, 2017 

[16] Weifeng Zhang, “Polymorphic Architecture for Future AI/ML Applications,” OCP 

Future Technology Symposium, San Jose, 2022 

[17] Mark Wade, “TeraPHY: a chiplet technology for low-power, high-bandwidth in-

package optical I/O,” Hotchips, 2019 

[18] Joris Van Campenhout, “Silicon photonics technology for terabit-scale optical I/O, 

ACM/IEEE International Workshop on System Level Interconnect Prediction (SLIP), 

2021 

[19] Eduard Roytman, “HPC/AI system opportunity with integrated photonics chiplets,” 

HiPChips Chiplet Workshop @ ISCA Conference, 2022 

[20] Ilya Lyubomirsky et al., “FEC Latency and Power/Area Tradeoffs for 100G KR/CR,” 

IEEE P802.3ck Meeting, Indianapolis, 2019 

 




